Параллелепипед

Параллелепипед — тело строгих геометрических форм, противоположные грани которого находятся в параллельных плоскостях. Все плоскости, или грани, включая основание, параллелограммы. Научно определение параллелепипеда — призма, основанием которой служит параллелограмм. Часто ученики затрудняются ответить, чем отличается параллелограмм от параллелепипеда. Отличие в том, что параллелограмм — фигура плоская, двухмерная, а параллелепипед — объемное геометрическое тело, протяженное в трех измерениях, имеющее ширину, высоту и длину. Как выглядит параллелепипед, посмотрите на рисунке:

parallelepiped.png

Виды параллелепипеда

Параллелепипед — многогранник. Его ограничивают шесть плоскостей, два основания, и четыре боковые грани. Линии, по которым соединяются грани, называются ребрами, а точки, в которых сходятся три ребра — вершинами. У фигуры 8 вершин.

Если грани имеют общее ребро, то их называют смежными, а те, у которых такого ребра нет — противоположными. Это же касается и вершин, если они не лежат на одной грани, то их тоже называют противоположными. Высота, ширина и длина прямоугольного  параллелепипеда называются измерениями, они выходят из одной вершины. Если фигура не прямоугольная, то измерения и ребра не совпадают.

vidy-parallelepipeda.jpg

При построении параллелепипеда на рисунке можно провести ряд дополнительных линий, которые помогают при вычислении объема, площади поверхности, неизвестных длин и других параметров. Если линии проходят через противоположные вершины, то их называют диагоналями. У параллелепипеда их насчитывается четыре.

В геометрии выделяют несколько типов параллелепипедов, которые отличаются некоторыми свойствами:

  • Прямой — фигура, у которой боковые грани являются прямоугольниками;
  • Прямоугольный — все грани прямоугольники, не только боковые, но и основания. Объемный прямоугольник — это т есть такой параллелепипед.
  • Ромбоэдр — все грани представляют собой равные ромбы;
  • Куб — все грани квадратны.

Свойства параллелепипеда

Для всех типов параллелепипедов можно выделить общие свойства, характеризующие фигуру. Таких свойств немного, запомнить их не сложно:

  • Диагонали параллелепипеда в точке пересечения делятся пополам;
  • Параллелепипед симметричен относительно точки пересечения диагоналей;
  • Любой отрезок, соединяющий две точки на гранях параллелепипеда и проходящий через точку пересечения диагоналей, делится пополам;
  • Противоположные грани равны и параллельны (вытекает из определения);
  • Сумма квадратов измерений равна квадрату диагонали.

Твердо запомнив эти свойства несложно решить большинство задач школьной геометрии.

Основные формулы параллелепипеда

Кроме свойств этой фигуры нужно запомнить ряд несложных формул. Конечно, в процессе решения задачи можно вывести эти выражения самостоятельно. Но часто на это нет времени, лучше воспользоваться готовыми шаблонами.

Формула площади боковой поверхности прямого параллелепипеда — одна из самых простых. Sбо∙h. В этой формуле только три величины, но одна из них составная:

H – высота параллелепипеда;

Р – периметр, АВ+ВС+АD+ CD.

Воспользоваться такой формулой можно только в том случае, если известны длины сторон основы и высота.

Площадь полной поверхности параллелепипеда определяется по формуле Sп=Sб+2Sо.

Как найти площадь боковой поверхности мы знаем из предыдущего пункта, а площадь Sо рассчитывается в зависимости от вида четырехугольника, лежащего в основании.

Объем прямого параллелепипеда тоже найти несложно, для этого достаточно умножить площадь основания на высоту. Объём V=Sо∙h

Формулы для прямоугольного параллелепипеда тоже не отличаются сложностью:

Sб=2c(a+b) в этой формуле а и b – стороны основания, с – высота, равна длине бокового ребра.

Площадь полной поверхности равна Sп=2(ab+bc+ac);

Объем V=abc, то есть, произведение всех трех измерений.

Когда же приходится вычислять площади и объем произвольного параллелепипеда, то показанные формулы не всегда срабатывают. Необходимо использовать законы векторной геометрии. При вычислении объема параллелепипеда через длину диагонали, необходимо использовать проекции на разные оси. Видимая простота формул — это только основа для сложной работы, требующей пространственного воображения и смекалки.

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$а$ – длина;

$b$ – ширина;

$с$ – высота(она же боковое ребро);

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$V$ – объем.

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_{бок}=P_{осн}·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

$S_{п.п}=2(ab+bc+ac).$

Дополнительные сведения, которые пригодятся для решения задач:

Куб

$а$ – длина стороны.

$V=a^3;$

$S_{бок}=4а^2;$

$S_{п.п}=6а^2;$

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

$V={1}/{3}S_{осн}·h$

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

Площадь треугольника.

  • $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$.
  • $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  • Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$.
  • $S=p·r$, где $r$ – радиус вписанной окружности.
  • $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности.
  • Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны. 

В основании лежит четырехугольник.

Пример:

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Решение:

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

$V={S_{прямоугольника}·h}/{3}={a·b·h}/{3}$, где $a$ и $b$ – стороны прямоугольника.

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

$СС_1=АА_1=4$

$V={А_1В_1·A_1D_1·СС_1}/{3}={8·12·4}/{3}=128$

Ответ: $128$

Теорема Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Практика: решай 8 задание и тренировочные варианты ЕГЭ по математике (профильной)

Parallelepiped-2.png

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Свойства параллелепипеда

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:

  1. Противолежащие ребра и грани фигуры параллельны и равны между собой. 1-svojstvo-parallelepipeda.png
  2. Углы сонаправленных сторон равны между собой. На фотографии ниже представлено графическое изображение сонапрвленных лучей OA и O1А1. Прямая рассекает пространство на две плоскости. Если лучи расположены в одной полуплоскости и параллельны друг другу, то их называют сонаправленными. 2-svojstvo-parallelepipeda.png
  3.  4 главные диагонали параллелепипеда пересекаются в одной точке внутри фигуры. Любой отрезок, проведенный между двумя плоскостями граней, через данную точку будет поделен ею пополам. Следствием данного свойства можно сформулировать следующим образом: плоскости, в которых лежат главные диагонали параллелепипеда, симметрично делят геометрическое тело. 
  4. Согласно теореме Пифагора, квадрат диагонали параллелепипеда равен сумме квадратов ее измерений. 

Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано: прямоугольный параллелепипед с измерениями 3, 4 и 12 см.Необходимо найти длину одной из главных диагоналей фигуры.Решение: Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

Задание 2.

Дано: наклонный параллелепипед с боковым ребром 10 см, прямоугольник KLNM с измерениями 5 и 7 см, являющийся сечением фигуры параллельным указанному ребру.Необходимо найти площадь боковой поверхности четырехугольной призмы.Решение: Сначала необходимо зарисовать дано.

Для решения данного задания необходимо применить смекалку. Из рисунка видно, что стороны KL и AD – неравны, как и пара ML и DC. Однако, периметры данных параллелограммов очевидно равны.

Следовательно, боковая площадь фигуры будет равна площади сечения помноженной на ребро AA1, так как по условию ребро перпендикулярно сечению. Ответ: 240 см2.

Похожие статьи

Что такое логарифмическая функция? Определение, свойства, решение задачВсе про арксинус, арккосинус, арктангенс, арккотангенсПроизводные тригонометрических функций: тангенса, синуса, косинуса и другихПростейшие и сложные тригонометрические неравенстваИспользуемые источники:

  • https://novstudent.ru/parallelepiped/
  • https://examer.ru/ege_po_matematike/teoriya/pryamiugolnyi_parallelepiped
  • https://karate-ege.ru/matematika/parallelepiped-osnovnye-svojstva-i-formuly.html