Равнобедренная трапеция – свойства, признаки и формулы

Содержание

Навигация по странице:Определение равнобедренной трапецииПризнаки равнобедренной трапецииОсновные свойства равнобедренной трапецииСтороны равнобедренной трапецииСредняя линия равнобедренной трапецииВысота равнобедренной трапецииДиагонали равнобедренной трапецииПлощадь равнобедренной трапецииОкружность описанная вокруг равнобедренной трапецииФормулы и свойства трапецииОпределение.Равнобедренная трапеция — это трапеция у котрой боковые стороны равны.На этой странице представленны формулы характерные равнобедренной трапеции. Не забывайте, что для равнобедренной трапеции выполняются все формулы и свойства трапеции.

trapezium1.png
Рис.1

Признаки равнобедренной трапеции

Трапеция будет равнобедренной если выполняется одно из этих условий: 1. Углы при основе равны:

∠ABC = ∠BCD и ∠BAD = ∠ADC

2. Диагонали равны:

AC = BD

3. Одинаковые углы между диагоналями и основаниями:

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

4. Сумма противоположных углов равна 180°:

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

5. Вокруг трапеции можно описати окружность

Основные свойства равнобедренной трапеции

1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:

AB = CD = m

3. Вокруг равнобедренной трапеции можно описать окружность4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):

h = m

5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:

SABCD = h2

6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:

h2 = BC · AD

7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:

AC2 + BD2 = AB2 + CD2 + 2BC · AD

8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:

HF BC, HF AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:

AP =  BC + AD
2
PD =  AD – BC
2

10. Также смотрите свойства трапеции

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

1. Формулы длины сторон через другие стороны, высоту и угол:

a = b + 2h ctg α = b + 2c cos α

b = a – 2h ctg α = a – 2c cos α

c =  h  =  ab
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a =  d12c2        b =  d12c2        c = √d12ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a =  2S b      b =  2S a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с =  S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с =  2S
(a + b) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

1. Формула определения длины средней линии через основания, высоту и угол при основании:

m = ah ctg α = b + h ctg α = a – √c2h2 = b + √c2h2

2. Формула средней линии трапеции через площадь и сторону:

m =  S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны: h = </td>1</td>√4c2 – (ab)2</td>2</td></tr></tbody></table>2. Формула высоты через стороны и угол прилегающий к основе:

h =  ab tg β  = csin β
2

Диагонали равнобедренной трапеции

Диагонали равнобедренной трапеции равны:

d1 = d2

Формулы длины диагоналей равнобедренной трапеции:

1. Формула длины диагонали через стороны:

d1 = √с2 + ab

2. Формулы длины диагонали по теореме косинусов:

d1 = √a2 + c2 – 2ac cos α

d1 = √b2 + c2 – 2bc cos β

3. Формула длины диагонали через высоту и среднюю линию:

d1 = √h2 + m2

4. Формула длины диагонали через высоту и основания:

d1 =  1 4h2 + (a + b)2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

1. Формула площади через стороны:

S =  a + b 4c2 – (ab)2
4

2. Формула площади через стороны и угол:

S = (b + c cos α) c sin α = (ac cos α) c sin α

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S =  4 r 2  =  4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

S =  ab  =  ab
sin α sin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = (a + b) · r = √ab·c = √ab·m

6. Формула площади через диагонали и угол между ними:

S =  d12 · sin γ  =  d12 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

8. Формула площади через основания и высоту:

S =  a + b · h
2

Окружность описанная вокруг трапеции

Окружность можно описать только вокруг равнобедренной трапеции!!!

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =  a·c·d1
4√p(pa)(pc)(pd1)

где

p =  a + c + d1
2

a – большее основание Формулы по геометрииТреугольник. Формулы и свойства треугольникаКвадрат. Формулы и свойства квадратаПрямоугольник. Формулы и свойства прямоугольникаПараллелограмм. Формулы и свойства параллелограммаРомб. Формулы и свойства ромбаТрапеция. Формулы и свойства трапеции- Равнобедренная трапеция. Формулы и свойства равнобедренной трапеции- Прямоугольная трапеция. Формулы и свойства прямоугольной трапецииПравильный многоугольник. Формулы и свойства правильного многоугольникаОкружность, круг, сегмент, сектор. Формулы и свойстваЭллипс. Формулы и свойства эллипсаКуб. Формулы и свойства кубаПризма. Формулы и свойства призмыПирамида. Формулы и свойства пирамидыСфера, шар, сегмент и сектор. Формулы и свойстваЦилиндр. Формулы и свойстваКонус. Формулы и свойстваФормулы площади геометрических фигурФормулы периметра геометрических фигурФормулы объема геометрических фигурФормулы площади поверхности геометрических фигурВсе таблицы и формулыСодержание:

Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.

Определение, признаки и элементы трапеции

Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.

Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.

Свойства равнобедренной трапеции

Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:

  1. Прямая, которая проходит через середину оснований такой трапеции, является ее осью симметрии, а также она перпендикулярна ее основаниям.
  2. Углы при основаниях трапеции равны.
  3. У равнобедренной трапеции также равны и длины диагоналей. Если диагонали перпендикулярны, тогда высота трапеции будет равна сумме основания, деленной на 2.
  4. Диагональ разбивает фигуру на 2 треугольника.
  5. Биссектрисы углов, принадлежащих одной и той же боковой стороне, всегда перпендикулярны друг другу.
  6. Если мы опустим высоту на большее из оснований трапеции, то получим в итоге 2 отрезка АЕ и ЕВ: 

Первый отрезок АЕ будет равен сумме оснований, деленной на 2, а второй отрезок ЕВ – разности, разделенной на 2:

Периметр равнобедренной трапеции

Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.

В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.

Как найти стороны трапеции?

Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.

В первую очередь можно найти стороны с помощью средней линии:

Есть альтернатива, если вам известны высота и угол при большем основании:

Средняя линия

Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части. 

У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.

Высота трапеции

Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.

Диагональ трапеции

Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.

А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:

Площадь равнобедренной трапеции

Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.

Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.

Это самые базовые формулы, поэтому очень часто используются в различных задачах.

Вписанная и описанные окружности

Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны. 

Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.

А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.

Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:

Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами. 

Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.

Еще тесты

Читайте также

Внутренние односторонние углы – теория, правило и свойстваУравнение биссектрисы в треугольнике – формула, свойства и решение задачТеорема Вариньона – формулировка, доказательство и следствияКак доказать, что четырехугольник является параллелограммом?

Равнобедренная трапеция
Тип четырёхугольник, трапеция
Рёбра 4
Вид симметрии Dih2, [ ], (*), порядок 2
Двойственный многоугольник дельтоид
Свойства
выпуклый, вписанный

В евклидовой геометрииравнобедренная трапеция — это выпуклыйчетырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях являются смежными (в сумме дающие 180º).

Специальные случаи

Специальные случаи трапеций

Прямоугольники и квадраты обычно рассматриваются как специальные случаи равнобедренных трапеций, хотя в некоторых источниках они таковыми не считаются.

Другим специальным случаем является трапеция с 3 равными сторонами. В англоязычной литературе её называют trilateral trapezoid (трёхсторонняя трапеция) [1], trisosceles trapezoid (триравнобедренная трапеция) [2] или, реже, symtra[3]. Такую трапецию можно рассматривать как отсечение 4 последовательных вершин от правильного многоугольника, имеющего 5 или более сторон.

Самопересечения

Любой несамопересекающийся четырёхугольник с единственной осью симметрии должен быть либо равнобедренной трапецией, либо дельтоидом[3]. Однако, если разрешить самопересечение, множество симметричных четырёхугольников нужно расширить включением в него самопересекающиеся равнобедренные трапеции, в которых пересекающиеся стороны равны, а две другие стороны параллельны, и антипараллелограммы, у которых противоположные стороны имеют равные длины.

У любого антипараллелограмма выпуклая оболочка является равнобедренной трапецией и антипараллелограмм может быть получен из диагоналей равнобедренной трапеции[4].

Антипараллелограмм

Описания

Если четырёхугольник является трапецией, не обязательно проверять, равны ли боковые стороны (и недостаточно, поскольку ромбы, являющиеся специальными случаями трапеций с боковыми сторонами равной длины, но у него нет осевой симметрии через середины оснований). Любое из следующих свойств выделяет равнобедренную трапецию от других трапеций:

  • Диагонали имеют одинаковую длину.
  • Углы при основании равны.
  • Отрезок, соединяющий середины параллельных сторон, перпендикулярен им.
  • Противоположные углы дополнительны (до 180º), из чего, в свою очередь, следует, что равнобедренные трапеции являются вписанными четырёхугольниками.
  • Диагонали делятся точкой пересечения на попарно равные отрезки. В терминах рисунка ниже, AE = DE, BE = CEAECE, если хотят исключить прямоугольники).

Если прямоугольники включаются в класс трапеций, то можно определить равнобедренную трапецию как “вписанный четырёхугольник с равными диагоналями” [5], как “вписанный четырёхугольник с парой параллельных сторон”, или как “выпуклый четырёхугольник с осью симметрии, проходящей через середины противоположных сторон”.

Углы

В равнобедренной трапеции углы при основаниях попарно равны. На рисунке ниже углы ∠ABC и ∠DCB являются одинаковыми тупыми углами, а углы ∠BAD и ∠CDA являются одинаковыми острыми углами.

Поскольку прямые AD и BC параллельны, углы, принадлежащие противоположным основаниям, являются дополнительными, то есть ABC + ∠BAD = 180°.

Диагонали и высота

Эта страница в последний раз была отредактирована 27 ноября 2020 в 10:35. Используемые источники:

  • https://ru.onlinemschool.com/math/formula/trapezium_isosceles/
  • https://nauka.club/matematika/geometriya/ravnobedrennaya-trapetsiya.html
  • https://wiki2.org/ru/равнобедренная_трапеция