Площадь шестиугольной пирамиды — формула, пример расчета

Домой Развлечения Высота пирамиды: определение, формулы, расчеты

image

Одной из объемных фигур, изучаемых в курсе пространственной геометрии, является пирамида. Важной характеристикой этой фигуры является ее высота. В статье дадим определение высоты пирамиды и приведем формулы, через которые она связана с другими линейными характеристиками.

Что собой представляет пирамида

Под пирамидой понимают геометрическую фигуру пространственную, которая получается в результате соединения всех углов многоугольника с одной точкой пространства. Рисунок ниже демонстрирует расположение линий (ребер) для четырехугольной и пятиугольной пирамид.

image

Многоугольная грань фигуры называется ее основанием. Точка, где все треугольные грани соединяются, называется вершиной. Для определения высоты пирамиды отмеченные элементы являются важными.

Высота фигуры

Высотой пирамиды называется перпендикуляр, который из ее вершины опущен на плоскость основания. Важно понимать, что из каждой вершины, принадлежащей основанию фигуры, тоже можно провести перпендикуляр к соответствующей треугольной грани, однако он высотой не будет являться. Высота пирамиды — это единственный перпендикуляр, который является одной из важных ее линейных характеристик.

Каждому школьнику известно, что любая плоская фигура обладает геометрическим центром (в физике ему соответствует центр масс). Например, геометрический центр для произвольного треугольника определяется точкой пересечения его медиан, для параллелограмма — точкой пересечения диагоналей. Если высота пирамиды пересекает ее основание в геометрическом центре, то фигура называется прямой. Пирамида прямая, имеющая в основании многоугольник с одинаковыми сторонами и углами, называется правильной.

image

Рисунок выше показывает, чем отличается неправильная пирамида от правильной. Видно, что высота неправильной фигуры лежит за пределами ее основания, в то время как у правильной шестиугольной пирамиды высота находится внутри фигуры, пересекая ее основание в центре геометрическом.

Важными свойствами всех правильных пирамид являются следующие:

  • все боковые грани представляют собой равнобедренные треугольники и равны друг другу;
  • длины боковых ребер и апофем являются одинаковыми.

Формулы для высоты правильной пирамиды

Существует четыре основных линейных характеристики для любой пирамиды правильной:

  • сторона основания;
  • боковое ребро;
  • апофема боковой грани;
  • высота фигуры.

Все они связаны математически друг с другом. Обозначим длину стороны основания символом a, высоту — h, апофему — hb и ребро — b. Формулы, которые эти величины связывают, имеют индивидуальный вид для соответствующей n-угольной пирамиды. Например, для правильной пирамиды четырехугольной высоту можно определить по формулам:

h = √(ab2 — a2/4);h = √(b2 — a2/2).

Эти формулы следуют из теоремы Пифагора при рассмотрении соответствующих прямоугольных треугольников внутри пирамиды.

Если рассматривается фигура с треугольным основанием, тогда справедливы следующие формулы для высоты правильной пирамиды:

h = √(ab2 — a2/12);h = √(b2 — a2/3).

Решение задачи с шестиугольной пирамидой

Предположим, что нам дана пирамида правильная с шестиугольным основанием. Известно, что высота основания пирамиды равна 13 см. Зная, что длина ее бокового ребра равна 10 см, необходимо вычислить объем и высоту правильной шестиугольной пирамиды.

Рисунок ниже показывает, как выглядит правильный шестиугольник.

image

Расстояние между любыми его двумя параллельными сторонами называется высотой. Не сложно показать, что эта высота ha связана с длиной стороны фигуры следующей формулой:

ha = a*√3

Подставляя в выражение значение ha, находим, что сторона основания a равна 7,51 см.

image

Высоту h фигуры можно определить, если рассмотреть прямоугольный треугольник, находящийся внутри пирамиды и состоящий из двух катетов (высота пирамиды и половина диагонали шестиугольного основания) и гипотенузы (боковое ребро). Тогда значение h будет равно:

h = √(b2 — a2) = √(100 — 56,4) = 6,6 см.

Объем пирамиды определяется как третья часть от произведения высоты фигуры на площадь ее основания. Площадь правильного шестиугольника равна:

S6 = n/4*a2*ctg(pi/n) = 6/4*a2*ctg(pi/6) = 3*√3/2*a2 = 3*√3/2*56,4 ≈ 146,53 см2.

Использованная для вычисления S6 формула является универсальной для произвольного правильного n-угольника.

Для определения объема фигуры остается подставить в соответствующую формулу найденные параметры:

V = 1/3*h*S6 = 1/3*6,6*146,53 = 322,366 см3.

Мы получили значение высоты пирамиды и рассчитали ее объем. Таким образом, поставленная задача решена.

Источник: Navolne

Одной из объемных фигур, изучаемых в курсе пространственной геометрии, является пирамида. Важной характеристикой этой фигуры является ее высота. В статье дадим определение высоты пирамиды и приведем формулы, через которые она связана с другими линейными характеристиками.

Что собой представляет пирамида

Под пирамидой понимают геометрическую фигуру пространственную, которая получается в результате соединения всех углов многоугольника с одной точкой пространства. Рисунок ниже демонстрирует расположение линий (ребер) для четырехугольной и пятиугольной пирамид.

Многоугольная грань фигуры называется ее основанием. Точка, где все треугольные грани соединяются, называется вершиной. Для определения высоты пирамиды отмеченные элементы являются важными.

Высота фигуры

Высотой пирамиды называется перпендикуляр, который из ее вершины опущен на плоскость основания. Важно понимать, что из каждой вершины, принадлежащей основанию фигуры, тоже можно провести перпендикуляр к соответствующей треугольной грани, однако он высотой не будет являться. Высота пирамиды – это единственный перпендикуляр, который является одной из важных ее линейных характеристик.

Каждому школьнику известно, что любая плоская фигура обладает геометрическим центром (в физике ему соответствует центр масс). Например, геометрический центр для произвольного треугольника определяется точкой пересечения его медиан, для параллелограмма – точкой пересечения диагоналей. Если высота пирамиды пересекает ее основание в геометрическом центре, то фигура называется прямой. Пирамида прямая, имеющая в основании многоугольник с одинаковыми сторонами и углами, называется правильной.

Рисунок выше показывает, чем отличается неправильная пирамида от правильной. Видно, что высота неправильной фигуры лежит за пределами ее основания, в то время как у правильной шестиугольной пирамиды высота находится внутри фигуры, пересекая ее основание в центре геометрическом.

Важными свойствами всех правильных пирамид являются следующие:

  • все боковые грани представляют собой равнобедренные треугольники и равны друг другу;
  • длины боковых ребер и апофем являются одинаковыми.

Формулы для высоты правильной пирамиды

Существует четыре основных линейных характеристики для любой пирамиды правильной:

  • сторона основания;
  • боковое ребро;
  • апофема боковой грани;
  • высота фигуры.

Все они связаны математически друг с другом. Обозначим длину стороны основания символом a, высоту – h, апофему – hb и ребро – b. Формулы, которые эти величины связывают, имеют индивидуальный вид для соответствующей n-угольной пирамиды. Например, для правильной пирамиды четырехугольной высоту можно определить по формулам:

h = √(ab2 – a2/4);

h = √(b2 – a2/2).

Эти формулы следуют из теоремы Пифагора при рассмотрении соответствующих прямоугольных треугольников внутри пирамиды.

Если рассматривается фигура с треугольным основанием, тогда справедливы следующие формулы для высоты правильной пирамиды:

h = √(ab2 – a2/12);

h = √(b2 – a2/3).

Решение задачи с шестиугольной пирамидой

Предположим, что нам дана пирамида правильная с шестиугольным основанием. Известно, что высота основания пирамиды равна 13 см. Зная, что длина ее бокового ребра равна 10 см, необходимо вычислить объем и высоту правильной шестиугольной пирамиды.

Рисунок ниже показывает, как выглядит правильный шестиугольник.

Расстояние между любыми его двумя параллельными сторонами называется высотой. Не сложно показать, что эта высота ha связана с длиной стороны фигуры следующей формулой:

ha = a*√3

Подставляя в выражение значение ha, находим, что сторона основания a равна 7,51 см.

Высоту h фигуры можно определить, если рассмотреть прямоугольный треугольник, находящийся внутри пирамиды и состоящий из двух катетов (высота пирамиды и половина диагонали шестиугольного основания) и гипотенузы (боковое ребро). Тогда значение h будет равно:

h = √(b2 – a2) = √(100 – 56,4) = 6,6 см.

Объем пирамиды определяется как третья часть от произведения высоты фигуры на площадь ее основания. Площадь правильного шестиугольника равна:

S6 = n/4*a2*ctg(pi/n) = 6/4*a2*ctg(pi/6) = 3*√3/2*a2 = 3*√3/2*56,4 ≈ 146,53 см2.

Использованная для вычисления S6 формула является универсальной для произвольного правильного n-угольника.

Для определения объема фигуры остается подставить в соответствующую формулу найденные параметры:

V = 1/3*h*S6 = 1/3*6,6*146,53 = 322,366 см3.

Мы получили значение высоты пирамиды и рассчитали ее объем. Таким образом, поставленная задача решена.

Похожие статьи

Вопрос по геометрии:

Апофема правильной шестиугольной пирамиды KABCDEF равна 6, радиус окружности, вписаной в основание пирамиды , равен 5. Найдите площадь полной поверхности пирамиды.

Пожаловаться

  • 13.01.2016 09:54
  • Геометрия
  • remove_red_eye 16572
  • thumb_up 25
Ответы и объяснения 1

Файл))))))))))))))))))))))))))))))))

Пожаловаться

  • 14.01.2016 19:58
  • thumb_up 12
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Новые вопросы

Геометрия

б) Составьте уравнение прямой, проходящей через точку N (3; -5) и перпендикулярный к прямой, пр…

Геометрия

У циліндрі паралельно його осі проведено площину, що перетинає нижню основу по хорді b, яку видно з…

Геометрия

Найдите площадь сечения единичного куба ABCDA1B1C1D1 плоскостью, проходящей через вершины а) А, В,С1…

Геометрия

Пожалуйста, помогите срочно. Координаты вершин пирамиды ABCD задаются как A (3; -1; 0), B (0; – 7…

Геометрия

Пожалуйста, срочно надо.

Геометрия

Подробное решение пожалуйста 

Геометрия

Помогите пожалуйста решить задачу,заранее спасибо!!! Задача АВ||α, ΑΑ1⊥α и ВВ1⊥α. ΑΒ=ΑΑ1=5,4см . Оп…

Геометрия

Допоможіть будь ласка 

ПОДЕЛИТЬСЯ

Р. К. Гордин ЕГЭ 2020 математика 11 класс геометрия, стереометрия задача 14 (профильный уровень) под редакцией И. В. Ященко соответствует ФГОС.

Ссылка для скачивания пособия задание №14 ЕГЭ: скачать сборник

Р.К.Гордин, Ященко И.В ЕГЭ задание 14 математика 11 класс профильный уровень ФГОС:

Некоторые задания:

1)Дан параллелепипед ABCDA1B1C1D1. Постройте прямую пересечения плоскостей BB1D1 и АВС1.

2)Основание пирамиды SABCDEF — шестиугольник ABCDEF, противоположные стороны которого попарно равны и параллельны. Постройте прямую пересечения плоскостей ASD и CSF.

3)Дана шестиугольная призма ABCDEFA1B1C1D1E1F1, основания которой — правильные шестиугольники. Точка О —центр основания ABCDEF, М— середина бокового ребра DDV Постройте прямую пересечения плоскости А1В1С1 с плоскостью, проходящей через точки О и М параллельно прямой АЕ.

4)Дана четырёхугольная пирамида SABCD, основание которой — параллелограмм ABCD. Точка М лежит на боковом ребре SC. Постройте точку пересечения прямой ВМ с плоскостью ASD.

5)Точки М и N — середины рёбер соответственно АС и треугольной призмы АВСА1В1С1. а) Постройте прямую пересечения плоскостей MNC1 и А1С1 б) В каком отношении плоскость MNC, делит ребро АВ?

6)Основание шестиугольной пирамиды SABCDEF — правильный шестиугольник ABCDEF. Точки М и N — середины рёбер SA и SC соответственно. а) Постройте сечение пирамиды плоскостью, проходящей через точки М, N и В. б) В каком отношении плоскость сечения делит отрезок, соединяющий вершину S с центром основания пирамиды?

7)Основание шестиугольной пирамиды SABCDEF — правильный шестиугольник ABCDEF. Точка М — середина ребра ВС. а) Постройте прямую пересечения плоскостей FSM и ASB. б) В каком отношении плоскость FSM делит отрезок, соединяющий точку А с серединой ребра SD?

8)Основание пирамиды SABCD—параллелограмм ABCD. Точка К лежит на ребре SD и отлична от S и D. а) Может ли сечение пирамиды плоскостью, проходящей через прямую АВ и точку К, быть параллелограммом? б) Пусть К — середина ребра SD, М — середина ребра АВ, а пирамида SABCD правильная, причём все её рёбра равны. Найдите угол между прямыми АК и SM.

9)Дана четырёхугольная пирамида SABCD, основание которой — прямоугольник ABCD, а высота проходит через центр О основания. Через середину А1 бокового ребра SA проведена плоскость а, параллельная плоскости основания, а через середину С1 бокового ребра SC и ребро АВ — плоскость b. Найдите угол между плоскостями а и 13, если АВ : ВС: SA = 8: 6:13.

10)Дана правильная четырёхугольная пирамида SABCD с вершиной S. Все рёбра пирамиды равны, Е —середина бокового ребра SC. Найдите углы между плоскостями: a) SAD и SBC; б) АВС и SCD; в) АВС и BDE; г) BSC и DSC; д) АВЕ и АВС.

11)Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Стороны основания равны 1, боковые рёбра равны 2. Точка G — середина ребра SC. Найдите расстояния: а) от точки S до прямой BF; б) от точки В до прямой SA; в) от точки F до прямой BG; г) от точки А до прямой SD; д) от точки А до прямой SC; е) от точки А до плоскости SDE; ж) от точки А до плоскости SBF; з) от точки А до плоскости SCE.

12)Высота PC треугольной пирамиды РАВС с вершиной Р проходит через точку С. Прямые РА и ВС перпендикулярны. а) Докажите, что основание пирамиды — прямоугольный треугольник. б) Найдите углы, которые образуют боковые рёбра РА и РВ с плоскостью основания, если АС = 6, ВС — 8, а расстояние от точки Р до прямой АВ равно 5.

13)Точка М — середина ребра АВ правильного тетраэдра DABC. а) Докажите, что ортогональная проекция точки М на плоскость ACD лежит на медиане АР грани ACD. б) Найдите угол между прямой DM и плоскостью ACD.

14)Дана правильная четырёхугольная пирамида РАВCD с вершиной в точке Р. Через точку С и середину ребра АВ перпендикулярно к основанию пирамиды проведена плоскость а. а) Докажите, что плоскость а делит ребро ВР в отношении 2: 1, считая от точки В. б) Найдите площадь сечения пирамиды плоскостью а, если известно, что РА = 10, АС = 16.

15)Через середину ребра АВ куба ABCDA1B1C1D1 проведена плоскость, параллельная прямым BD1 и А1С1. Докажите, что эта плоскость делит диагональ DB1 в отношении 3 : 5, считая от от вершины D.

16)Высота конуса равна 6, а радиус основания равен 8. а) Докажите, что наибольшая площадь сечения конуса плоскостью, проходящей через его вершину, равна 50. б) Найдите расстояние от центра основания конуса до этой плоскости.

17)В окружность основания конуса с вершиной Р вписан правильный шестиугольник ABCDEF. а) Докажите, что объём пирамиды PABD вдвое больше объёма пирамиды PDEF. б) Найдите площадь сечения конуса плоскостью АВР, если радиус основания конуса равен 6, а длина его образующей равна 9.

18)На ребре SD правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка М, причём SM: MD = 1:4. Точки Р и Q — середины рёбер ВС и AD соответственно. а) Докажите, что сечение пирамиды плоскостью MPQ является равнобедренной трапецией. б) Найдите отношение объёмов многогранников, на которые плоскость MPQ разбивает пирамиду.

19)В правильной треугольной пирамиде SABC сторона АВ основания АВС равна 12, а боковое ребро SA равно 8. Точки М и N — середины рёбер SA и SB соответственно. Плоскость а проходит через прямую MN и перпендикулярна плоскости основания пирамиды.

Другие пособия Ященко И.В ЕГЭ по математике 11 класс:

Рабочая тетрадь Ященко И.В ЕГЭ 2020 математика 11 класс значения выражений

Задание 11 ЕГЭ математика профильный уровень тренировочные задачи с ответами Ященко И.В

–>

–> –>

–>Главная–> » –>Онлайн игры–> » Сканави_ Сборник задач по математике _1.001_13.450 » Задачи стереометрии(11.001-11.235)

(11.050)_ Найти боковую поверхность правильной шестиугольной пирамиды

Найти боковую поверхность правильной шестиугольной пирамиды, высота которой равна h, а боковое ребро равно l

–>Рейтинг–>: /4

|

–>Счетчики–>: 1370 | –>Добавил–>: alexlat

–>Добавлять комментарии могут только зарегистрированные пользователи.–> [ –>Регистрация–> | –>Вход–> ]

–> –>

–> –> –> –> –>

–>–>Категории раздела–> –>

–>

Алгебра_ глава первая(1.001-1.040) [43]
Найти Х из пропорции(1.041-1.045) [5]
Вычислить наиболее рациональным способом (1.046-1.050) [5]
Тождественные преобразования алгебраических выражений (2.001-2.157) [148]
Тождество_Проверить справедливость равенств(2.125-2.134) [12]
Тождество.Найти области допустимых значении параметров,если они не указаны(2.312_1.360) [51]
Тождество_ Доказать тождество(3.001-3.062) [76]
Тождество_Упростить выражения(3.063-3.013) [54]
Тождество__Преобразовать впроизведение(3.114-3.149) [37]
Тождество_Доказать справедливость равенств [30]
Тождество_Вычислить (3.153-3.500) [74]
Тождественные преобразования тригонометрических выражений _(3.166-3.185) [20]
Прогрессии (4.001-4.035) [53]
Координаты и Вектороы [36]
Алгебраические уравнения_Решить уравнения (6.001-6.6.302) [113]
Алгебраические уравнения_Решить системы уравнений (6.067-6.370) [122]
Алгебраические уравнения_Не решая уравнение (6.120-6.150) [16]
Логарифмы_Упростить(7.001-7.308) [34]
Логарифмы_Решить уравнения(7.020-7.333) [257]
Логарифмы_Решить системы уравнений (7.128-7.340) [65]
Тригонометрические уравнения_Системы уравнений_Решить уравнения(8.001-8.500) [500]
Неравенства (9.001-9.015) [53]
Неравенства_Найти области определения функций(9.016-9.129) [22]
Неравенства_Решить неравенства(9.022-9.304) [230]
Задачи по планиметрии(10.001-10.425) [437]
Задачи стереометрии(11.001-11.235) [235]
Задачи по Геометрии с применением Тригонометрии(12.001-12.465) [459]
Применение уравнений к решению задач(13.001-13.450) [452]
Математический Анализ [60]
Комбинаторика и Бином Ньютона [30]
Комплексные числа [50]
Элементарная математика_Сканави [114]

–>

–> –> –> –> –> –> –> –> –> –> –> –> –> –>

–>–>Друзья сайта–> –>

–>–>Официальный блог Сообщество uCoz FAQ по системе Инструкции для uCoz–> –>

–> –>

–>–>Статистика–> –>

–> –>

–>

–>Copyright MyCorp © 2021 –>Сайт управляется системой uCoz

Используемые источники:

  • https://klevo.net/vysota-piramidy-opredelenie-formuly-raschety/
  • https://www.syl.ru/article/443108/vyisota-piramidyi-opredelenie-formulyi-raschetyi
  • https://online-otvet.ru/geometria/5b7497a4f0470557fb093ccd
  • https://100balnik.ru/%d1%80-%d0%ba-%d0%b3%d0%be%d1%80%d0%b4%d0%b8%d0%bd-%d1%8f%d1%89%d0%b5%d0%bd%d0%ba%d0%be-%d0%b8-%d0%b2-%d0%b5%d0%b3%d1%8d-%d0%b7%d0%b0%d0%b4%d0%b0%d0%bd%d0%b8%d0%b5-14-%d0%bc%d0%b0%d1%82%d0%b5%d0%bc/
  • https://alexlat.ucoz.ru/stuff/golovolomki/zadachi_stereometrii_11_001_11_105/11_150_najti_bokovuju_poverkhnost_pravilnoj_shestiugolnoj_piramidy_vysota_kotoroj_ravna_h/69-1-0-6750